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The  effects  of environmental  endocrine-disrupting  chemicals  (EDCs)  are  a great  and  growing  concern  for
human and animal  development  and  life.  The  reproductive  organs  are  considered  as  a primary  target  of
EDCs,  yet the  effects  on  reproductive  organs  can  extend  to other  body  systems.  Perinatal  diethylstilbe-
strol  (DES)-exposed  mice  exhibit  various  reproductive  organ  abnormalities.  The  perinatal  DES-exposure
model  has  allowed  insight  into  our  understanding  of  the mechanisms  of  persistent  reproductive  organ
iethylstilbestrol
emale reproductive tract
xternal genitalia
strogen

abnormalities  elicited  by exposure  to estrogens  and/or  estrogenic  EDCs.  The  persistent  changes  in the
vagina  of neonatally  DES-exposed  mice  result  from  sustained  expression  of  growth  factors  by  ligand-
independent  transcriptional  activation  of the  estrogen  receptor.  Developmental  regulatory  genes, such
as Wnt  and  Hox  genes,  are  also  targets  of  DES  during  fetal  stages  and  altered  gene  expression  can  induce
malformations  of  the  reproductive  organs.  In  this  review,  we  focus  on the development  of  female  repro-
ductive  tracts  and external  genitalia,  and  discuss  the  recent  progress  in  understanding  the  disruptive

DCs  o
effects  of estrogens  and  E

. Introduction

The mammalian female reproductive tract provides the sites for
amete fertilization, implantation and subsequent development of
he embryo and delivery of the fetus. The female reproductive tract
s derived from the Müllerian duct and urogenital sinus. During
ormal mouse development, the Müllerian duct forms as a small

nvagination of the surface epithelium of the mesonephros, located
djacent to the cranial end of the Wolffian duct. The Müllerian duct
xtends caudally towards the urogenital sinus. Once the Müllerian
uct forms, it differentiates into oviduct, uterus, cervix and the
pper part of the vagina, whereas the urogenital sinus gives rise
o the lower part of the vagina and urinary tract. In males, the Mül-
erian duct regresses under the action of anti-Müllerian hormone,
hich is secreted from Sertoli cells in the testis. Androgens are
lso secreted from Leydig cells in the testis, and consequently the
olffian duct is maintained, resulting in its differentiation into epi-

idymis, vas deferens and seminal vesicle. Thus, reproductive organ
evelopment depends on gonadal development and its secretion of
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hormones at the correct times and amounts during development
[1–3].

Recent studies have shown various forms of sex determination
in vertebrates. Sex is genetically determined in the medaka (fish)
by the presence or absence of the Y chromosome specific gene
DMY and estrogens facilitate and maintain sex differentiation of the
ovarian cells and the following female pathway [4–6]. Administra-
tion of exogenous estrogens shortly after fertilization causes male
to female sex-reversal, with the formation of a functional ovary
and reproductive capabilities [7–9]. Successful induction of sex-
reversal by sex steroid hormones has been also achieved in various
fish species and amphibians [10–12].  In the chicken, sex reversal
can be induced experimentally, at least in part, by injecting eggs
with estrogens, or by inhibiting estrogen production [13,14],  indi-
cating a critical role for estrogen in avian sex determination. Some
reptiles, including crocodilians and some turtles and lizards, exhibit
temperature-dependent sex determination; sex depends on the
temperature at which the eggs are incubated. Incubation temper-
ature can modify the expression and activity of aromatase in the
red-eared slider turtle and American alligator [15–17].  In addition,
administration of exogenous estrogens to an egg can override the
effects of male incubation temperature on sexual differentiation

[18,19], suggesting that endogenous estrogen mediates ovarian
development as a downstream signaling event in response to envi-
ronmental temperature. Thus, in these animals, estrogen is critical
for gonadal sex differentiation (ovary formation), and the subse-
quent female reproductive tract development.

dx.doi.org/10.1016/j.jsbmb.2011.03.009
http://www.sciencedirect.com/science/journal/09600760
http://www.elsevier.com/locate/jsbmb
mailto:taisen@nibb.ac.jp
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In contrast, the relative importance of sex steroid hormones in
ex determination apparently seems to diminish in mammals com-
ared with other vertebrates. Estrogen signaling is indeed required
or complete ovarian differentiation and maintenance in adult

ice [20–23].  Intriguingly, estrogen receptors (ERs) are necessary
o repress the transdifferentiation of an adult ovary to a testis,
robably cooperating with forkhead transcription factor Foxl2
24,25]. However, there is no evidence that endogenous estrogens
ffect sex determination and ovary formation in mammals. Stud-
es using knockout and mutant mice for ERs and aromatase genes
ave revealed no fundamental effects of endogenous estrogens on
natomical/morphological development in the reproductive tract

 during embryogenesis and neonatal stage [20–23].  Notwith-
tanding this observation, ERs have been already expressed in
eveloping mammalian reproductive organs from early stages and
hus, they respond to estrogenic signals and can be the targets
f endocrine-disrupting chemicals (EDCs). Therefore, administra-
ion of exogenous estrogens or estrogenic environmental signals
hat mimic  hormones in animals can disrupt its normal devel-
pment. One of the best-studied cases is a synthetic estrogen,
iethylstilbestrol (DES). Beginning in the 1940s, DES was routinely
rescribed to pregnant women for the prevention of miscarriages.
o date, it is well-known that in utero exposure to DES induces
aginal clear-cell adenocarcinoma and various malformations in
he reproductive tracts in young women [26–30].  Furthermore,
n males exposed in utero to DES, reproductive organ abnor-

alities, including hypospadias, are found more frequently than
n non-exposed controls [30–32].  Sexually dimorphic develop-

ent of external genitalia depends on sex hormone environment
uring embryogenesis and thus can be strongly affected by the
DCs [33–36].

Potential endocrine disruptive effects in wild animals and
umans exposed to EDCs during development have been summa-
ized previously [37,38]. Despite this, the molecular mechanisms
nderlying EDC action remain largely unknown. Animal studies
ave shown that experimental exposure to estrogens/estrogenic
hemicals induces misregulation of the endocrine systems and
evelopmental sequences during embryogenesis. The perinatal
ouse model has been used to understand molecular mechanisms

f EDC-induced abnormalities in reproductive organs. In particular,
ES effects were well recognized and firmly documented as it sig-
ificantly alters the developing organism and results in persistent
ffects in the adult. In this review, we focus on the effects of DES
n the female reproductive tracts and external genitalia.

. Estrogen independent activation of ER� and growth
actor signalings in mouse vagina exposed neonatally to DES

Estrogen acts via intracellular ERs that are members of the
uclear receptor superfamily of transcription factors. Upon lig-
nd binding, ERs enhance the rate of transcriptional initiation
y recruiting and assembling transcription regulatory complexes
o the promoter regions of its target genes. Thus, estrogens
xhibit acute and transient actions in target organs. In the adult
emale reproductive tracts, administration of estrogens in the adult
ncreases organ weight and promotes cell proliferation and differ-
ntiation, whereas estrogen withdrawal induces rapid involution of
teri and vaginae resulting in atrophy. These specific and reversible
ffects of estrogens are important in maintaining homeostasis
nd are required for normal health and reproduction. In contrast,
ong-term exposure to estrogens induces an imbalance in cell pro-

iferation and increases the risk of cancer of the reproductive organs
n rodents and in humans [39,40]. It is also well-known that in utero
xposure to DES causes vaginal clear-cell adenocarcinoma in a sub-
et of exposed females including humans [28]. This is rare type of
umor, but its epidemiology revealed a clear association with early
ry & Molecular Biology 127 (2011) 51– 57

exposure to DES in utero. In addition, as the generation of women
exposed to DES become older, concern has arisen about their health
risks, because it has been hypothesized that in utero DES exposure
could also influence the incidence of breast cancer, squamous neo-
plasia of the cervix, vaginal cancer and potentially other pathologies
of the reproductive system [27,41–43].  Like humans, perinatal
female mice exposed to DES develop estrogen-independent persis-
tent cell proliferation, stratification and cornification of the vaginal
epithelium, resulting in hyperplastic lesions and vaginal cancer
later in life [44–46].  Although the evidence for endocrine disrup-
tion in humans resulting from exposure to EDCs is limited, animal
studies have shown that perinatal exposure of various EDCs repro-
ducibly induces estrogen-independent abnormal phenotypes in
vagina. For instance, neonatal exposure of bisphenol A, an EDC
exhibiting a weak estrogenic activity, also induces such malforma-
tions in mouse vagina. Thus, the animal DES model has been used to
advance our knowledge of the potential risk of the carcinogenetic
effects of estrogens, including developmental effects of EDCs [47].
Thus, the animal DES model has been used to advance our knowl-
edge of the potential risk of the carcinogenetic effects of estrogens,
including developmental effects of EDCs [48,49].

The proliferation and differentiation of mouse vaginal epithe-
lial cells are strongly regulated by ovarian estrogens. The vaginae
of ovariectomized mice show an atrophied epithelium of 2-3
cell layers, but estrogen administration rapidly induces epithe-
lial cell proliferation, stratification and superficial cornification. In
the uterus and vagina, mitogenic effects of estrogen are mediated
by stromal ER�,  as shown by recombination experiments with
ER� mutant-stroma and wild type-epithelium [50,51]. These data
indicate that such stroma-derived growth factors stimulate epithe-
lial cell proliferation and differentiation during normal activity.
In fact, previous studies have shown that several growth factors,
including EGF-like growth factors, are expressed in the female
reproductive organs upon estrogenic stimulation [52–54].  Intrigu-
ingly, the vagina in ovariectomized mice exposed DES neonatally
also expresses EGF-like growth factors at high levels, even in the
absence of endogenous estrogen [55–57].  Furthermore, EGFR and
erbB2, receptors for EGF-like growth factors, are activated in such
vagina. Serine residues located in the N-terminal activation func-
tion (AF-1) domain of ER� were identified as downstream targets
of the erbB signaling pathway [57]. In the neonatal DES-exposed
mouse vagina, the AF-1 domain of ER� is also phosphorylated
even after ovariectomy. It has been shown that phosphorylation
of ER� induces transcription activity in a ligand-independent man-
ner through AF-1 [58]. Thus, persistent phosphorylation of ER� via
erbB signaling could activate growth factor expression, resulting
in formation of an auto-activation loop, which can contribute to
the formation of cancerous lesions later in life (Fig. 1). Intriguingly,
this activation loop of ER�-EGF-like growth factors-erbBs seems to
be established only in the epithelium but not through the stroma,
because high expression of EGF-like growth factors is detected in
the epithelium only in vaginae from neonatally DES-exposed mice
[57]. Failure of the regulatory interactions between the epithelium
and stroma could be one of the mechanisms for aberrant activation
of vaginal epithelial cell proliferation. In addition to erbB signal
transduction, IGF-I signaling also appears to contribute to abnor-
malities in vagina exposed to DES perinatally [59]. It is currently
unknown how the ER� transactivation induced by only AF-1 is
maintained in vagina from mice exposed neonatally to DES. Spe-
cific modulators that change ER� function could provide further
insight into this question.
Although the precise mechanisms have not been established
explaining how such an activation loop with persistent gene
expression is elicited, one of the possibilities might be an alteration
of methylation of specific genes (Fig. 1). It has been shown that pre-
natal DES exposure alters methylation patterns in the promoter of
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the distal uterine epithelium [75]. Loss of Hoxa11 results in a nar-
rowing of the entire uterus, which makes it difficult to assess the
uterotubal junction, and decrease in the number of uterine glands
[76,77]. Importantly, although not identical, these phenotypes are
ig. 1. Hypothetical model for the estrogen-independent estrogen receptor and gr
ections show ovariectomized mouse vagina exposed neonatally to DES or vehicle a

ome estrogen-responsive genes, including the demethylation of
he c-fos and lactoferrin genes in the Müllerian duct [60,61]. c-Fos
s a growth promoter that can predispose cells to becoming tumors.
ypomethylation of the nucleosomal binding protein 1 (Nsbp1)
ene and its subsequent elevated expression is also reported after
eonatal exposure to either DES or genistein [62]. Neonatal estro-
en – or bisphenol A – exposure in rats induces hypomethylation
f phosphodiesterase type 4 variant 4 (PDE4D4) gene, resulting in
levated expression of this gene in the prostate [63]. PDE4D4 is a
rucial regulator for cAMP degradation and suggests a correlation
etween its expression and development of prostatic intraepithe-

ial neoplasia. Thus, epigenetic changes could lead to altered gene
xpression and hence to altered tissue differentiation and forma-
ion, which could produce an increased susceptibility to disease
nd dysfunction later in life.

It was reported that DNA methylation changes can induce trans-
enerational effects, further exacerbating the potential role of EDCs
hat affect this pathway [64]. Increased level of lactoferrin gene in
he uterus is detected in neonatally DES-exposed mice and also
n their pups which never received DES-exposure [65]. Further-

ore, the pups of prenatally DES-exposed mice have higher risks
f reproductive organ abnormalities including tumors [66,67]. The
reliminary evidence of the risk of reproductive dysfunction in
aughters whose mothers were exposed DES in utero is reported
68–70], but further follow-up is needed.

. Morphological defects of female reproductive tracts by
ES

EDCs act in specific ways in tissues to disrupt normal devel-
pmental sequences. When EDCs affect relatively early periods of
rganogenesis, they can lead to congenital anomalies. DES acts
oth as a carcinogen and teratogen in the developing fetuses and
eonates in mammals. For example, DES causes the boundary

etween the oviduct and uterus (the uterotubal junction) to be lost,
esulting in infertility or subfertility [71,72]. DES-exposed mice also
xhibit a malformed oviduct that lacks coils, and uterine abnormali-
ies including hypoplasia, epithelial cell stratification, disorganized

yometrial muscle and reduced uterine glands [45,73].
factors activation pathway in neonatally DES-exposed mouse vagina. Histological

The Müllerian duct differentiates into the oviduct, uterus, cervix
and upper part of vagina, along an anterior to posterior pattern.
The Abdominal B (AbdB) Hox genes are expressed in a nested fash-
ion throughout the Müllerian duct (Fig. 2). Hoxa9 is expressed in
the oviductal or cranial part of the Müllerian duct but not in the
more caudal region. Hoxa10 expression exhibits a sharp bound-
ary at the junction between the presumptive uterus and oviduct.
Hoxa11 is also expressed in the uterus as well as extending caudally
in the cervix. Hoxa13 expression is caudally restricted primarily to
the vagina in mice [74]. Analyses in knockout mice revealed that
AbdB Hox genes play an instructive role on cellular identities along
undifferentiated axes. In female Hoxa10 mutants, the anterior part
of the uterus exhibits an anterior transformation to the oviduct
and abnormalities of the uterotubal junction, and stratification of
Fig. 2. Expression pattern of Hox genes and Wnt7a in female reproductive tracts
during embryogenesis. Mutant mice for those genes exhibit various defects similar
to  those of prenatal DES-exposed mice.
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imilar to those of prenatally DES-exposed mice (Fig. 2). In fact, DES
xposure can alter the expression of the Hox genes in the Müllerian
uct. In utero DES exposure shifts Hox9 expression from the oviduct
o the uterus and decreases both Hoxa10 and Hoxa11 expression
n the embryonic uterus [78,79]. In addition to Hox genes, prenatal
ES exposure also reduced Wnt7a expression in the Müllerian duct

80]. Wnt7a plays critical roles in epithelial–mesenchymal inter-
ctions during embryonic development [81]. Wnt7a is expressed
hroughout the entire Müllerian duct in embryos, whereas after
irth it becomes restricted to the oviductal and uterine epithelium.
nt7a mutants exhibit a lack of oviductal coiling and uterine gland

ormation, and exhibit a multilayered uterine epithelium [82]. It is
herefore likely that abnormalities in the prenatally DES-exposed

ouse oviduct and uterus are associated with misregulation of
orphogenetic genes such as Wnt7a and the Hox genes (Fig. 2).
lthough mutant mouse studies provide an insight into complex
ene networks during female reproductive organ formation, the
nvolvement of endogenous estrogens in the expression of these
enes has not been understood, because ER mutant mice do not
how distinct altered phenotypes of Müllerian duct formation and
ifferentiation. In contrast, it is obvious that altered expression of
nt7a and AbdB Hox genes produced by DES exposure are medi-

ted through ER�,  because ER� mutant mice fail to induce such
bnormalities [73]. Recently, it has been shown that the frequency
f DNA methylation in the Hoxa10 intron is higher in prenatally
ES-exposed mice when compared with controls [83]. Hoxa10

s associated with a variety of aspects of cellular physiology and
omen’s health. Although altered methylation by DES exposure in
umans has not been reported, down-regulation of Hoxa10 expres-
ion and aberrant methylation of Hoxa10 gene is associated with
ndometrial carcinoma and endometriosis in humans [84–86].

The urogenital sinus, which differentiates into the urinary tract,
ower part of vagina and clitoris, is also affected by DES. Neona-
al DES exposure induces female hypospadias, the formation of a
ommon urethral-vaginal canal accompanied by a wide cleft clitoris
87]. Compound-induced mutation of Hoxa13 and Hoxd13 results
n a common canal of the urinary tract and vaginal lumen [88],
lthough the relationship between female hypospadias induced by
ES and Hox genes expression has not been elucidated. Intrigu-

ngly, dihydrotestosterone (DHT), or non-aromatizable androgens,
lso induce female hypospadias [89]. These results indicate that
etal and neonatal stages showing active morphogenesis and devel-
pment are more sensitive to endocrine disruptive stimulation
han are adults.

. Hormone-dependent development of external genitalia

Prenatally DES-exposed humans and laboratory animals exhibit
 range of reproductive organ malformations including hypospa-
ias, microphallus, retained testes and many aspects of the
esticular dysgenesis syndrome [90–94].  Hypospadias (in which
he urethral meatus is located on the ventral side of the penis)
s one of the most frequent human birth defects. The increasing
revalence of hypospadias in humans has been hypothesized to be
he result of exposure to EDCs/estrogens during fetal development
95–98].  In laboratory animals, fetuses exposed to DES or 17�-
thinylestradiol (EE2; a synthetic estrogen used in contraceptive
ills) exhibit hypospadias-like phenotype with a failure of preputial
evelopment in male mice [94]. In addition, permanent dysmor-
hogenesis of the penis has been observed in adult rats treated

eonatally with DES [99].

The sexual dimorphic development of external genitalia
epends on the presence or absence of androgens and is, therefore,
trongly affected by hormonal environment during embryogene-
is. Flutamide, which inhibits androgens binding to the androgen
ry & Molecular Biology 127 (2011) 51– 57

receptor, demasculinize the external genitalia in male rodent
offspring [100,101].  Likewise, the fungicides vinclozolin and
procymidone, and pesticides DDT and its metabolite p,p′-DDE
induce defects of androgen pathway with sufficient potency to
induce cleft phallus and ambiguous genitalia [102–105]. In con-
trast, mechanisms of DES and other estrogens-induced external
genitalia malformation has not been clarified. ERs are endoge-
nously expressed in the embryonic external genitalia [93,106,107].
Further, ER� mutant mice are resistant to estrogens-induced
penile abnormalities [108] indicating that estrogen-exposure could
directly perturb male genitalia development.

The external genitalia are typically sexually dirmorphic organs
and arise through dichotomous differentiation of common pre-
cursor tissues [109,110].  It is well documented that androgen
plays a central role in such processes as epithelium-mesenchymal
interactions [36,111]. Recently, canonical Wnt  signal was  shown
to regulate the masuculinization of external genital coopera-
tively with the androgen signal [34]. The bilateral mesenchyme
adjacent to the urethral plate epithelium displayed sexually
dimorphic activity of the Wnt  signal. Loss- and gain-of-function
mutants of �-catenin display altered sexual development of the
external genitalia, suggesting that the Wnt  signaling pathway func-
tions as a locally expressed masculine effector [34]. Mutation
of the Hoxa13 gene, which is associated with hand-foot-genital
syndrome, causes genital abnormalities including hypospadias
[112–114]. The Hoxa13 mutant mouse shows reduced expression
of androgen receptors, suggesting a requirement of Hoxa13 for
masculinization of external genitalia [115]. As discussed above, ERs
signaling can affect the cross-talk with developmental factors such
as Wnt  and Hox genes. Therefore, estrogen signals could affect such
signals as observed in the Müllerian duct.

5. Conclusion

Despite a large number of reports over the last decade on the
mechanisms of DES and EDCs on reproductive organ development,
much still needs to be understood. An emerging paradigm, the
fetal origin of adult disease, is a new framework for considering
the effects of EDCs on human and animal life. The plasticity of
development in the perinatal period is evolutionarily advantageous
for adaptation to the prenatal and early postnatal environment.
However, the modern environment has environmental factors,
including EDCs that easily influence fetal and neonatal develop-
ment, resulting in permanent changes in cell differentiation and
morphology. The instructive roles of estrogen signaling during
embryogenesis are also important issues as an understanding of
the precise mechanisms through which EDCs affect developing ani-
mals can also help us to understand how normal development is
accomplished.
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